Специальные главы математики
книга

Специальные главы математики

Здесь можно купить книгу "Специальные главы математики " в печатном или электронном виде. Также, Вы можете прочесть аннотацию, цитаты и содержание, ознакомиться и оставить отзывы (комментарии) об этой книге.

Место издания: Екатеринбург

ISBN: 978-5-7996-3083-6

Страниц: 203

Артикул: 101143

Электронная книга
304.5

Краткая аннотация книги "Специальные главы математики"

Учебное пособие «Специальные главы математики» содержит такие разделы, как числовые ряды, функциональные ряды, степенные ряды в действительной и комплексной областях, теория функций комплексной переменной, преобразование Лапласа, тригонометрические ряды Фурье, интеграл и преобразование Фурье. В пособии представлено большое количество задач по разделам курса, в конце каждого из которых предлагаются упражнения для самостоятельного решения. Пособие предназначено для бакалавров и специалистов инженерных направлений и специальностей УрФУ.

Содержание книги "Специальные главы математики "


ПРЕДИСЛОВИЕ
Глава 1. ЧИСЛОВЫЕ РЯДЫ
1.1. Понятие числового ряда
1.2. Ряды с положительными членами
1.3. Знакопеременные ряды
1.4. Ряды с комплексными членами
Упражнения для самостоятельной подготовки к главе 1
Глава 2. ФУНКЦИОНАЛЬНЫЕ РЯДЫ
2.1. Основные понятия и определения. Область сходимости функционального ряда
2.2. Равномерная сходимость
2.3. Степенные ряды
2.4. Разложение функции в степенной ряд. Ряд Тейлора
2.5. Применение рядов Тейлора
Упражнения для самостоятельной подготовки к главе 2
Глава 3. ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО
3.1. Определение функции комплексного переменного
3.2. Элементарные функции комплексного переменного и их свойства
3.3. Предел и непрерывность функций комплексного переменного
3.4. Дифференцируемость и аналитичность функций комплексного переменного
3.5. Интегрирование функции комплексного переменного
3.6. Особые точки функции комплексного переменного
3.7. Понятие вычета функции комплексного переменного
Упражнения для самостоятельной подготовки к главе 3
Глава 4. ПРЕОБРАЗОВАНИЕ ЛАПЛАСА
4.1. Понятие оригинала и его изображения
4.2. Свойства преобразования Лапласа
4.3. Решение дифференциальных уравнений и систем операционным методом
Упражнения для самостоятельной подготовки к главе 4
Глава 5. РЯДЫ И ПРЕОБРАЗОВАНИЕ ФУРЬЕ
5.1. Ряды Фурье
5.2. Интеграл Фурье
5.3. Преобразование Фурье
Упражнения для самостоятельной подготовки к главе 5
ПРИЛОЖЕНИЕ
Ответы к главе 1
Ответы к главе 2
Ответы к главе 3
Ответы к главе 4
Ответы к главе 5
БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Все отзывы о книге Специальные главы математики

Чтобы оставить отзыв, зарегистрируйтесь или войдите

Отрывок из книги Специальные главы математики

23Упражнения для самостоятельной подготовки к главе 1 2. Исследовать числовой ряд 5631n nn�=Ґе на сходимость.3. Исследовать числовой ряд 5521+=Ґеnnn� на сходимость.4. Исследовать числовой ряд 1 612214231829- + - + - + - + на сходи-мость и вычислить его сумму, если это возможно.5. Исследовать числовой ряд nnn2135+=Ґе� на сходимость.6. Исследовать числовой ряд 1131nn-=Ґе� на сходимость.7. Исследовать числовой ряд 14521nnn-+=Ґе� на сходимость.8. Исследовать числовой ряд 13nnln(lnn)�=Ґе на сходимость.9. Исследовать числовой ряд 2132231nnn++=Ґе� на сходимость.10. Исследовать числовой ряд 3131nnn+=Ґе� на сходимость по признаку Даламбера.11. Исследовать числовой ряд 2121nnn-=Ґе� на сходимость; оценить по-грешность приближенного равенства S S»4.12. Оценить погрешность приближенного равенства S S»3.13. Исследовать числовой ряд nnnn!�=Ґе1 на сходимость.14. Исследовать знакоположительный числовой ряд1211()nnn+=Ґе� на сходимость с помощью радикального признака Коши.15. Исследовать числовой ряд 131112nnnn�=Ґе+жизцшч на сходимость.

Внимание!
При обнаружении неточностей или ошибок в описании книги "Специальные главы математики (автор Вероника Белоусова, Галина Ермакова, Ксения Поторочина, Наталия Чуксина, Ирина Шестакова)", просим Вас отправить сообщение на почту help@directmedia.ru. Благодарим!