Оптимальная маршрутизация инструмента машин фигурной листовой резки с числовым программным управлением. Математические модели и алгоритмы
Здесь можно купить книгу "Оптимальная маршрутизация инструмента машин фигурной листовой резки с числовым программным управлением. Математические модели и алгоритмы " в печатном или электронном виде. Также, Вы можете прочесть аннотацию, цитаты и содержание, ознакомиться и оставить отзывы (комментарии) об этой книге.
Автор: Александр Петунин, Александр Ченцов, Павел Ченцов
Форматы: PDF
Издательство: Издательство Уральского университета
Год: 2020
Место издания: Екатеринбург
ISBN: 978-5-7996-3016-4
Страниц: 251
Артикул: 101183
Краткая аннотация книги "Оптимальная маршрутизация инструмента машин фигурной листовой резки с числовым программным управлением. Математические модели и алгоритмы"
В монографии описаны постановки и методы исследования оптимизационных задач маршрутизации инструмента для машин листовой резки с числовым программным управлением. Эти задачи возникают при проектировании технологических процессов раскроя листового материала. Особое внимание в работе уделено разработанным авторами новым математическим моделям и вычислительным алгоритмам маршрутной оптимизации. В основе теоретических конструкций находятся идеи широко понимаемого динамического программирования. Монография может быть полезна ученым, преподавателям и работникам промышленности, специализирующимся в области прикладной математики, исследования операций и систем автоматизации проектирования, а также аспирантам, магистрантам и студентам старших курсов, обучающимся по соответствующим направлениям подготовки.
Содержание книги "Оптимальная маршрутизация инструмента машин фигурной листовой резки с числовым программным управлением. Математические модели и алгоритмы "
ВВЕДЕНИЕ
I. ИНЖЕНЕРНЫЕ ЗАДАЧИ МАРШРУТИЗАЦИИ ИНСТРУМЕНТА МАШИН ЛИСТОВОЙ РЕЗКИ. ОБЩИЕ ПОСТАНОВКИ И ПОДХОДЫ К ИХ РЕШЕНИЮ
1. МОДЕЛИРОВАНИЕ МАРШРУТА ИНСТРУМЕНТА ДЛЯ МАШИН ФИГУРНОЙ ЛИСТОВОЙ РЕЗКИ С ЧИСЛОВЫМ ПРОГРАММНЫМ УПРАВЛЕНИЕМ. ОСНОВНЫЕ ПОНЯТИЯ И ЗАДАЧИ
§ 1.1. Технологии и техники листовой резки на машинах с ЧПУ
§ 1.2. Маршрут резки и оптимизационные задачи маршрутизации инструмента машин листовой резки с ЧПУ
§ 1.3. Технологические ограничения параметров маршрута инструмента машин листовой резки с ЧПУ
§ 1.3.1. Ограничения координат точек врезки и точек выключения инструмента, обусловленные деформацией материала при врезке
§ 1.3.2. Условие предшествования
§ 1.3.3. Эвристические правила термической резки заготовок из листовых материалов
§ 1.4. Классификация оптимизационных задач маршрутизации инструмента машин фигурной листовой резки с ЧПУ
2. ПРАКТИЧЕСКИЕ АСПЕКТЫ ОПТИМИЗАЦИИ ТРАЕКТОРИИ ИНСТРУМЕНТА ДЛЯ МАШИН ЛАЗЕРНОЙ РЕЗКИ С ЧПУ
§ 2.1. Точное вычисление целевых функций в задаче оптимизации маршрута резки на примере машины лазерной резки ByStar 3015
§ 2.1.1. Вычисление фактического времени лазерной резки машины с ЧПУ в зависимости от параметров управляющей программы и технологических факторов процесса резки
§ 2.1.2. Вычисление стоимости резки заготовок на машине с ЧПУ в режиме моделирования процесса резки
§ 2.2. Стратегии формирования маршрута режущего инструмента для типовых заготовок на машиностроительном производстве
§ 2.2.1. Стратегии проектирования маршрута режущего инструмента для круглых заготовок
§ 2.2.2. Стратегии проектирования маршрута режущего инструмента для многоугольных заготовок
§ 2.3. Разработка методов учета динамических ограничений в оптимизационных алгоритмах маршрутизации инструмента машин для термической резки листовых заготовок
II. МАТЕМАТИЧЕСКИ Е МОДЕЛИ И МЕТОДЫ РЕШЕНИЯ ЗАДАЧ МАРШРУТИЗАЦИИ, СВЯЗАННЫХ С ЛИСТОВОЙ РЕЗКОЙ НА МАШИНАХ С ЧПУ
3. ЗАДАЧА ПОСЛЕДОВАТЕЛЬНОГО ОБХОДА МЕГАПОЛИСОВ С УСЛОВИЯМИ ПРЕДШЕСТВОВАНИЯ
§ 3.1. Используемые соглашения и обозначения
§ 3.2. Математическая постановка задачи. Обсуждение на содержательном уровне
§ 3.3. Математическая постановка задачи. Объект исследования и некоторые характерные ограничения
§ 3.4. Расширение основной маршрутной задачи
§ 3.5. Экономичная версия метода динамического программирования
§ 3.6. Построение эвристик на базе ДП
4. ЗАДАЧИ МАРШРУТИЗАЦИИ С ОГРАНИЧЕНИЯМИ И УСЛОЖНЕННЫМИ ФУНКЦИЯМИ СТОИМОСТИ
§ 4.1. Трудности при решении задач маршрутизации
§ 4.2. Постановка задач маршрутизации
§ 4.3. Динамическое программирование при усложненных функциях стоимости
§ 4.4. Локальное улучшение допустимых решений
§ 4.5. Алгоритм на функциональном уровне (вставка в начало)
§ 4.6. Алгоритм на функциональном уровне (вставка в середину)
§ 4.7. Финальная оптимизирующая вставка
§ 4.8. Итерационные методы с использованием оптимизирующих вставок (общие соображения)
5. АЛГОРИТМЫ РЕШЕНИЯ ЗАДАЧ МАРШРУТИЗАЦИИ С ОГРАНИЧЕНИЯМИ
§ 5.1. Общие подходы к решению задач маршрутизации
§ 5.2. Задача маршрутизации перемещений (частная постановка задачи)
§ 5.3. Итерационный режим с комбинированием оптимизирующих вставок разной «длины»
§ 5.4. Итерационный режим с элементами оптимизации локальных условий предшествования
§ 5.5. Итерационный режим со случайным расположением вставок фиксированной «длины»
§ 5.6. Вариант «жадного» эвристического алгоритма
ЗАКЛЮЧЕНИЕ
Библиографический список
Все отзывы о книге Оптимальная маршрутизация инструмента машин фигурной листовой резки с числовым программным управлением. Математические модели и алгоритмы
Отрывок из книги Оптимальная маршрутизация инструмента машин фигурной листовой резки с числовым программным управлением. Математические модели и алгоритмы
В соответствии с условиями предшествования резка контуров, ограни¬чивающих цветные области д л я четырех деталей на рис. 1.14, д о л ж н а осу¬ществляться в следующей последовательности: 1) желтый, красный, синий, серый; 2) красный, синий, серый; 3) желтый, серый; 4) желтый, серый. Рис. 1.14. Пример раскройной карты деталей, содержащих внутренние контуры Условия предшествования и ограничения координат точек врезки и точ¬ки выключения инструмента, обусловленные деформацией материала при врезке, имеют статический характер, т. е. однозначно определяются спроекти¬рованной раскройной картой, используемым д л я резки технологическим обо¬рудованием и свойствами раскраиваемого материала. В терминах маршрута резки ROUTE и его параметров Mo, Mi , Si, Mf, M2, S2, Mf, . . . , MK, SK, MK, ii , i2, . . . , «K первое технологическое ограничение однозначно определяет допустимые геометрические области GM и GM * д л я выбора точек врезки и точек выключения инструмента, а второе технологическое ограничение на¬кладывает запрет на некоторые значения перестановки I = (i , i2, . . . , iK) при формировании порядка резки сегментов. При этом сформулированные требования не зависят от задаваемых параметров кортежа ROUTE. В отличие от этих двух технологических ограничений следующий тип технологических требований устанавливает дополнительные ограничения на выбор точки врезки и выбор порядка резки сегментов на к а ж д о м шаге фор¬мирования маршрута резки (то есть при определении параметров очередного 41
С книгой "Оптимальная маршрутизация инструмента машин фигурной листовой резки с числовым программным управлением. Математические модели и алгоритмы" читают
Внимание!
При обнаружении неточностей или ошибок в описании книги "Оптимальная маршрутизация инструмента машин фигурной листовой резки с числовым программным управлением. Математические модели и алгоритмы (автор Александр Петунин, Александр Ченцов, Павел Ченцов)", просим Вас отправить сообщение на почту help@directmedia.ru. Благодарим!
и мы свяжемся с вами в течение 15 минут
за оставленную заявку