Начертательная геометрия : курс лекций
Здесь можно купить книгу "Начертательная геометрия : курс лекций" в печатном или электронном виде. Также, Вы можете прочесть аннотацию, цитаты и содержание, ознакомиться и оставить отзывы (комментарии) об этой книге.
Место издания: Москва
ISBN: 978-5-4499-3828-2
Страниц: 144
Артикул: 104581
Возрастная маркировка: 16+
Краткая аннотация книги "Начертательная геометрия"
В издании приведены лекции по курсу «Начертательная геометрия» с примерами решения задач. Для лучшего представления картины некоторые задачи сопровождаются наглядными (аксонометрическими) изображениями. Подробно рассмотрены задачи из контрольных работ № 1 и № 2. Предназначено для студентов вузов всех форм обучения, изучающих курс «Начертательная геометрия».
Содержание книги "Начертательная геометрия : курс лекций"
Введение
Лекция 1
Тема 1. Проецирование точки
1.1. Метод проекций
1.2. Точка в системе двух плоскостей проекций π1, π2
1.3. Точка в системе трех плоскостей проекций π1, π2, π3
Вопросы для самоконтроля к теме 1
Лекция 2
Тема 2. Проецирование прямой линии
2.1. Проецирование отрезка прямой общего положения
2.2. Особые (частные) положения прямой линии относительно плоскостей проекций
2.2.1. Прямые, параллельные одной из плоскостей проекций (Прямые уровня)
2.2.2. Прямые, параллельные двум плоскостям проекций (Проецирующие)
2.2.3. Прямые, лежащие на плоскостях проекций
2.2.4. Прямые, лежащие на осях
2.3. Следы прямой линии
2.4. Определение натуральной величины прямой и углов ее наклона к плоскостям проекций (метод прямоугольного треугольника)
2.5. Деление отрезка в заданном отношении
2.6. Взаимное положение прямой и точки
2.7. Взаимное положение двух прямых
2.8. Проецирование прямого угла
Вопросы для самоконтроля к теме 2
Лекция 3
Тема 3. Проецирование плоскости
3.1. Способы задания плоскостей
3.2. Положение плоскости относительно плоскостей проекций
3.2.1. Плоскость общего положения
3.2.2. Плоскости частного положения
3.3. Прямая и точка в плоскости
3.3.1. Прямая общего положения в плоскости общего положения
3.3.2. Прямые особого положения в плоскости общего положения
3.3.3. Линия наибольшего наклона плоскости (линия ската)
3.3.4. Линии особого положения в проецирующих плоскостях
3.3.5. Принадлежность точки и прямой плоскости
Лекция 4
3.4. Взаимное положение прямой с плоскостью и двух плоскостей
3.4.1. Определение видимости геометрических элементов на эпюрах
3.4.2. Взаимное положение прямой и плоскости
3.4.3. Взаимное положение двух плоскостей
3.4.4. Взаимное пересечение плоских фигур
3.4.5. Взаимно перпендикулярные плоскости
Вопросы для самоконтроля к теме 3
Лекция 5
Тема 4. Способы преобразования чертежа
4.1. Способ вращения
4.1.1. Вращение точки
4.1.2. Вращение прямой
4.1.3. Вращение плоскости
4.2. Способ перемены плоскостей проекций
Лекция 6
4.3. Способ плоскопараллельного перемещения
4.4. Способ совмещения
Вопросы для самоконтроля к теме 4
Лекция 7
Тема 5. Геометрические тела
5.1. Многогранники
5.1.1. Построение проекций многогранников
5.1.2. Пересечение многогранника прямой линией
5.1.3. Пересечение многогранника плоскостью частного положения
5.1.4. Пересечение многогранника плоскостью общего положения
5.1.5. Развертка поверхности многогранника
Лекция 8
5.2. Криволинейные тела. Тела вращения
5.2.1. Кривые линии
5.2.2. Кривые поверхности
5.2.3. Фигуры сечения конической поверхности
5.2.4. Пересечение боковой поверхности прямого кругового конуса прямой линией
5.2.5. Пересечение прямого кругового конуса плоскостью частного положения
5.2.6. Пересечение прямого кругового конуса плоскостью общего положения
5.2.7. Развертка поверхности тел вращения
Лекция 9
5.3. Взаимное пересечение поверхностей геометрических тел
5.3.1. Пересечение поверхностей многогранников
5.3.2. Пересечение поверхностей криволинейных тел
Вопросы для самоконтроля к теме 5
Библиографический список
Все отзывы о книге Начертательная геометрия : курс лекций
Отрывок из книги Начертательная геометрия : курс лекций
22 На эпюре (рис. 16), где все плоскости проекций (кото-рые мы теперь не ограничиваем) совмещены, проекции A1 и A2 окажутся на одной вертикальной линии связи (перпен-дикулярной к оси Оx), проекции A2 и A3 — на одной гори-зонтальной линии связи (перпендикулярной к оси Оz). Профильная проекция точки A3 настолько удалена от оси Оz насколько горизонтальная A1 удалена от оси Оx. Поэтому координату y переносим с Оy на Оy1 с помощью линейки, циркуля, биссектрисы угла или под углом 45° (рис. 16). Точка А, все координаты которой положительны, ле-жит в I октанте. Расстояние до плоскости π1 = А А1 = А2 Аx = Аz 0 = А3 Аy1 = z. Расстояние до плоскости π2 = А А2 = А1 Аx = Аy 0 = А3 Аz = y. Расстояние до плоскости π3 = А А3 = А2 Аz = Аx 0 = А1 Аy = x. Lx, Ly, Lz — расстояния от точки А до соответствующих осей, Lx = А30, Ly = А20, Lz = А10. Рис. 16. Точка А в системе π1, π2, π3 (эпюр)
С книгой "Начертательная геометрия" читают
Внимание!
При обнаружении неточностей или ошибок в описании книги "Начертательная геометрия : курс лекций (автор Татьяна Гончарова)", просим Вас отправить сообщение на почту help@directmedia.ru. Благодарим!
и мы свяжемся с вами в течение 15 минут
за оставленную заявку