Принцип узловых точек
книга

Принцип узловых точек

Здесь можно купить книгу "Принцип узловых точек " в печатном или электронном виде. Также, Вы можете прочесть аннотацию, цитаты и содержание, ознакомиться и оставить отзывы (комментарии) об этой книге.

Автор: Петр Преображенский

Форматы: PDF

Издательство: Типография Императорского Университета

Год: 1888

Место издания: Казань

Страниц: 39

Артикул: 15957

Электронная книга
20

Краткая аннотация книги "Принцип узловых точек"

Сообщение П. Преображенского (сделанное в 79 заседании секции физико-математических наук Общества Естествоиспытателей при Имперторском Казанском Университете).

Все отзывы о книге Принцип узловых точек

Чтобы оставить отзыв, зарегистрируйтесь или войдите

Отрывок из книги Принцип узловых точек

- 30 — Раздокен1е догарнена функц!к и въ рядъ. § 18. Важность значеши функцш и въ раз смотренных* нами вопросах* побуждает* искать возможности вычислять ее непосредственно для какого угодно аргумента. Постараемся найти разложеше ея или ея логариема въ рядъ. Можно найти рядъ, выражающей lg м(1+х). Но такъ какъ и(0) = 0, то 1д и(\ л-х) при — 1 обращается въ оо и потому рядъ можетъ быть сходящимся только при условш, что модуль х меньше 1. Въ практическом* отношеши более интересно другое разложеше. Такъ какъ намъ известно разложеше въ рядъ функцш Ще*) (формула 3) и притомъ мы знаем*, что и(\) = \ и w(0) = 0, то естественно сделать предположеше / Х\ ахх+а^+а%хъ-^ . и\е ) =е и при помощи выражешя В(е*) искать определить коэффи-щенты а. Возьмемъ отъ обеих* частей функцш В. Получимъ х ( ахх+а%х%+агх*+ . . .\ е = В\е ) Разложив* первую часть по степенямъ х и вторую часть при помощи формулы В(е ) = 1+S ^ 2 ^ + 3 ^ 3 s ;+ ' ' ' приравняем* коэффищенты при одинаковых* степеняхъ х. Получим*:

Внимание!
При обнаружении неточностей или ошибок в описании книги "Принцип узловых точек (автор Петр Преображенский)", просим Вас отправить сообщение на почту help@directmedia.ru. Благодарим!